Quantitative structure-property relationship study of the solvent polarity using wavelet neural networks.

نویسندگان

  • Kobra Zarei
  • Morteza Atabati
  • Malihe Ebrahimi
چکیده

Quantitative structure-property relationship (QSPR) studies based on artificial neural network (ANN) and wavelet neural network (WNN) techniques were carried out for the prediction of solvent polarity. Experimental S' values for 69 solvents were assembled. This set included saturated and unsaturated hydrocarbons, solvents containing halogen, cyano, nitro, amide, sulfide, mercapto, sulfone, phosphate, ester, ether, etc. Semi-empirical quantum chemical calculations at AM1 level were used to find the optimum 3D geometry of the studied molecules and different quantum-chemical descriptors were calculated by the HyperChem software. A stepwise MLR method was used to select the best descriptors and the selected descriptors were used as input neurons in neural network models. The results obtained by the two methods were compared and it was shown that in WNN, the convergence speed was faster and the root mean square error of prediction set was also smaller than ANN. The average relative error in WNN was 7.9 and 6.8% for calibration and prediction set, respectively, and the results showed the ability of the WNN developed here to predict solvent polarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ET) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

Quantitative Structure-Pproperty Relationship Modeling of the Redox Potential for Some Phenolic Antioxidants

In this work, quantitative structure-property relationship (QSPR) approaches were used to predict the redox potential of 42 phenolic antioxidants. The structures of all compounds optimized by the AM1 semi-empirical method and then a large number of molecular descriptors were calculated for each compound in the data set. Subsequently, stepwise multilinear regression was applied to select the mos...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2007